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Abstract
We present component-resolved and total pair distribution functions for a 2DEG
with two symmetric valleys. Our results are based on quantum Monte Carlo
simulations performed at several densities and spin polarizations.

PACS numbers: 71.10.Ca, 71.45.Gm, 02.70.Ss

1. Introduction

A two-valley (2V) two-dimensional (2D) electron gas (EG) is the simplest model to describe
electrons confined in solid state devices such as Si-MOSFETs [1] and certain quantum wells
[2]. In this 2D model, electrons interact via a 1/r potential in a uniform neutralizing
background and possess an additional discrete degree of freedom (the valley index). One
may identify electrons with given spin projection and valley index as belonging to a different
species or component. We focus on the case of two symmetric valleys, where the number of
up- (down-) spin electrons is the same for both valleys. In this case at zero temperature the
2DEG is completely characterized in terms of the coupling parameter rs = 1/

√
πnaB and the

spin polarization ζ = (n↑ − n↓)/n (where n is the total electron density, aB the Bohr radius,
n↑(↓) the density of up- (down-) spin electrons).

The interest in the properties of the 2DEG has been strongly revived in recent years due
to the experimental discovery of a previously unexpected metal–insulator transition [3, 4] in
which the valley degree of freedom appears to play an important role [5, 6]. The transition
takes place at low density, where an accurate treatment of electron correlation is crucial. In this
respect, quantum Monte Carlo (QMC) simulations have provided over the years the method
of choice for microscopic studies [7–13] of the 2DEG.

We have recently provided an analytic expression of the correlation energy of the 2V2DEG
[14]. Here, we focus on the pair distribution functions (PDFs), which are strictly related to the
description of exchange and correlation properties of the system (see e.g. [15]). As pointed
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Figure 1. 2V component-resolved pair distribution functions for ζ = 0, 1 and rs = 2, 10. Solid
lines represent the total g(r).

out in [13], PDFs may serve a variety of purposes, among which are the estimate of finite
thickness effects on the 2DEG spin susceptibility [16], applications in DFT calculations or a
test of the accuracy of hypernetted-chain calculations [17].

2. Pair distribution function: definitions

The PDF is related to the probability of finding two electrons at positions r and r′, respectively.
The component-resolved PDF gαβ(r′, r) of a multicomponent 2DEG is defined as [15]

gαβ(r′, r) =
〈
ψ

†
β(r′)ψ †

α(r)ψα(r)ψβ(r′)
〉

nβ(r′)nα(r)
(1)

with ψ †
α, ψα denoting creation and annihilation field operators, 〈· · ·〉 the expectation value on

the ground state and nα(r) = 〈
ψ †

α(r)ψα(r)
〉

the electron density of the component α. The
normalization is such that gαβ ≡ 1, in case there is neither exchange nor correlation. In an
homogeneous and isotropic system, gαβ depends only on the relative distance r = |r − r′| and
there is symmetry for index permutations (gαβ = gβα). If cα = nα/n is the concentration of
the component α, the total (component-summed) PDF g(r) reads

g(r) =
∑

αβ

cαcβgαβ(r). (2)

In the 2V2DEG, α ≡ σν is a composite index which denotes the spin and valley
(respectively σ and ν) degrees of freedom and spans the four cases α =↑ 1,↓ 1,↑ 2,↓ 2.
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Figure 2. Examples of 2V component resolved pair distribution functions at finite ζ . See labels.

In general, for 2V there are ten different gαβ , but in the case of two symmetric valleys the
number of different gαβ is two for ζ = 0, 1 and five for 0 < ζ < 1 (see also [17]). In the
following we shall denote the different gαβ with one of the possible different labels (e.g. for
0 < ζ < 1g↑1↓1 = g↑2↓2 = g↑1↓2 = g↑2↓1).

3. Simulation details

Most of the simulation details are the same as in [14]. We performed fixed-phase DMC
simulations (for a review of QMC techniques see e.g. [18]) for rs = 1, 2, 5, 10, 20 and
ζ = 0, 3/13, 5/13, 7/13, 10/13, 1. To reduce the finite size effects, we used twist-averaged
boundary conditions (TABC) [19], which also allow us to change ζ by flipping any number
of spins at fixed number of electrons N. To sample the PDFs we performed simulations for a
system of N = 52 electrons. Time steps were chosen at the different rs to give an acceptance
rate corresponding to ∼ 99%. We did simulations with 320 walkers. The twist grid is the
same as in [14]. As in [14], we used a Slater–Jastrow trial wave function 	T , but, here, we
considered only plane-wave nodes, since the more accurate backflow (BF) nodes yield only
slight modifications to the PDFs [8, 13]. Besides, BF effects on the energy were shown to be
bigger in the two-component case than in the four-component system [14].

DMC provides the mixed estimate of an operator O, i.e. 〈O〉mix = 〈	0|O|	T 〉/〈	0	T 〉
(with 	0 denoting the ground state of the system). If O commutes with the Hamiltonian
H, 〈O〉mix coincides with the expectation value on the true ground state 	0. If O does not
commute with H (as in the case here considered), it is better to compute the extrapolated

3



J. Phys. A: Math. Theor. 42 (2009) 214043 M Marchi et al

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6

g
(r

)

r/a

rs = 1

rs = 20

ζ =0
ζ =1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6

g
(r

)

r/a

rs = 1, 2, 5, 10, 20

ζ = 0.538

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6

g
(r

)

r/a

rs = 1, 2, 5, 10, 20

ζ = 0.538

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6

g
(r

)

r/a

rs = 1, 2, 5, 10, 20

ζ = 0.538

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6

g
(r

)

r/a

rs = 1, 2, 5, 10, 20

ζ = 0.538

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6

g
(r

)

r/a

rs = 1, 2, 5, 10, 20

ζ = 0.538

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6

g
(r

)

r/a

Figure 3. 2V total pair distribution functions. Left panel: rs = 1, 20 and ζ = 0, 1. Right panel:
rs = 1, 2, 5, 10, 20 and ζ = 0.538 (increasing peaks for increasing rs ). All lengths are in units of
a = rsaB .

estimate 〈O〉extr = 2〈O〉mix − 〈O〉VMC + O(δ2) (where 〈O〉VMC is the variational MC
expectation value on 	T ) which is accurate to second order in the difference δ between
	0 and 	T .

4. Two valley pair distribution functions

In figures 1 and 2 we show representative examples of 2V component-resolved PDFs
for ζ = 0, 1 and finite ζ, respectively. All lengths are given in units of a = rsaB .
The component-resolved PDFs shown in figure 1 illustrate the tendency to a local order
which favors electrons belonging to different species (as e.g. ↑ 1 and ↓ 1 ) to get closer
than electrons belonging to the same species. For intermediate spin polarizations (see
figure 2) the component-resolved PDFs exhibit a richer structure than the ζ = 0, 1 cases, with
qualitative features clearly related to the interplay of exchange and correlations (for example,
in the density range considered the diagonal PDF of the minority component in a strongly
polarized system is found to be determined by exchange alone, to a very good approximation).
The significant spin-polarization dependence seen in the component-resolved PDFs almost
disappears in the total PDFs, particularly at large rs . This can be appreciated in figure 3 (left
panel), which shows the total PDFs for a high-density (rs = 1) and a low-density (rs = 20)

case with zero and full spin polarization. The dependence of the total PDF on rs is depicted
in figure 3 for ζ = 0.538.

We see that even for rs as small as 1 the effect of exchange on the total PDF, which is
expected to decrease with the number Nc of (equally populated) components, is already very
small for Nc = 2.

Full tabulations of the calculated PDFs are available upon request from the first author.
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